The FIP1 gene encodes a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase

نویسندگان

  • Pascal J Preker
  • Joachim Lingner
  • Lionel Minvielle-Sebastia
  • Walter Keller
چکیده

We have identified an essential gene, called FIP1, encoding a 327 amino acid protein interacting with yeast poly(A) polymerase (PAP1) in the two-hybrid assay. Recombinant FIP1 protein forms a 1:1 complex with PAP1 in vitro. At 37 degrees C, a thermosensitive allele of FIP1 shows a shortening of poly(A) tails and a decrease in the steady-state level of actin transcripts. When assayed for 3'-end processing in vitro, fip1 mutant extracts exhibit normal cleavage activity, but fail to polyadenylate the upstream cleavage product. Polyadenylation activity is restored by adding polyadenylation factor I (PF I). Antibodies directed against FIP1 specifically recognize a polypeptide in these fractions. Coimmunoprecipitation experiments reveal that RNA14, a subunit of cleavage factor I (CF I), directly interacts with FIP1, but not with PAP1. We propose a model in which PF I tethers PAP1 to CF I, thereby conferring specificity to poly(A) polymerase for pre-mRNA substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase.

In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs contain...

متن کامل

A snoRNA modulates mRNA 3′ end processing and regulates the expression of a subset of mRNAs

mRNA 3' end processing is an essential step in gene expression. It is well established that canonical eukaryotic pre-mRNA 3' processing is carried out within a macromolecular machinery consisting of dozens of trans-acting proteins. However, it is unknown whether RNAs play any role in this process. Unexpectedly, we found that a subset of small nucleolar RNAs (snoRNAs) are associated with the mam...

متن کامل

Functional dissection of the zinc finger and flanking domains of the Yth1 cleavage/polyadenylation factor.

Yth1, a subunit of yeast Cleavage Polyadenylation Factor (CPF), contains five CCCH zinc fingers. Yth1 was previously shown to interact with pre-mRNA and with two CPF subunits, Brr5/Ysh1 and the polyadenylation-specific Fip1, and to act in both steps of mRNA 3' end processing. In the present study, we have identified new domains involved in each interaction and have analyzed the consequences of ...

متن کامل

Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33.

Cleavage and polyadenylation specificity factor (CPSF) is the central component of the 3' processing machinery for polyadenylated mRNAs in metazoans: CPSF recognizes the polyadenylation signal AAUAAA, providing sequence specificity in both pre-mRNA cleavage and polyadenylation, and catalyzes pre-mRNA cleavage. Here we show that of the seven polypeptides that have been proposed to constitute CPS...

متن کامل

R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants.

Genome instability via RNA:DNA hybrid-mediated R loops has been observed in mutants involved in various aspects of transcription and RNA processing. The prevalence of this mechanism among essential chromosome instability (CIN) genes remains unclear. In a secondary screen for increased Rad52 foci in CIN mutants, representing ∼25% of essential genes, we identified seven essential subunits of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 81  شماره 

صفحات  -

تاریخ انتشار 1995